Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Cell ; 186(1): 131-146.e13, 2023 01 05.
Artículo en Inglés | MEDLINE | ID: covidwho-2165134

RESUMEN

Germinal centers (GCs) form in secondary lymphoid organs in response to infection and immunization and are the source of affinity-matured B cells. The duration of GC reactions spans a wide range, and long-lasting GCs (LLGCs) are potentially a source of highly mutated B cells. We show that rather than consisting of continuously evolving B cell clones, LLGCs elicited by influenza virus or SARS-CoV-2 infection in mice are sustained by progressive replacement of founder clones by naive-derived invader B cells that do not detectably bind viral antigens. Rare founder clones that resist replacement for long periods are enriched in clones with heavily mutated immunoglobulins, including some with very high affinity for antigen, that can be recalled by boosting. Our findings reveal underappreciated aspects of the biology of LLGCs generated by respiratory virus infection and identify clonal replacement as a potential constraint on the development of highly mutated antibodies within these structures.


Asunto(s)
Linfocitos B , Centro Germinal , Infecciones por Virus ARN , Animales , Ratones , Linfocitos B/citología , Linfocitos B/inmunología , Células Clonales , COVID-19 , Centro Germinal/citología , Centro Germinal/inmunología , SARS-CoV-2 , Gripe Humana , Infecciones por Virus ARN/inmunología , Infecciones por Virus ARN/patología , Infecciones por Virus ARN/virología
2.
J Virol ; 96(17): e0077422, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: covidwho-1992940

RESUMEN

XIAP-associated factor 1 (XAF1) is an interferon (IFN)-stimulated gene (ISG) that enhances IFN-induced apoptosis. However, it is unexplored whether XAF1 is essential for the host fighting against invaded viruses. Here, we find that XAF1 is significantly upregulated in the host cells infected with emerging RNA viruses, including influenza, Zika virus (ZIKV), and SARS-CoV-2. IFN regulatory factor 1 (IRF1), a key transcription factor in immune cells, determines the induction of XAF1 during antiviral immunity. Ectopic expression of XAF1 protects host cells against various RNA viruses independent of apoptosis. Knockout of XAF1 attenuates host antiviral innate immunity in vitro and in vivo, which leads to more severe lung injuries and higher mortality in the influenza infection mouse model. XAF1 stabilizes IRF1 protein by antagonizing the CHIP-mediated degradation of IRF1, thus inducing more antiviral IRF1 target genes, including DDX58, DDX60, MX1, and OAS2. Our study has described a protective role of XAF1 in the host antiviral innate immunity against RNA viruses. We have also elucidated the molecular mechanism that IRF1 and XAF1 form a positive feedback loop to induce rapid and robust antiviral immunity. IMPORTANCE Rapid and robust induction of antiviral genes is essential for the host to clear the invaded viruses. In addition to the IRF3/7-IFN-I-STAT1 signaling axis, the XAF1-IRF1 positive feedback loop synergistically or independently drives the transcription of antiviral genes. Moreover, XAF1 is a sensitive and reliable gene that positively correlates with the viral infection, suggesting that XAF1 is a potential diagnostic marker for viral infectious diseases. In addition to the antitumor role, our study has shown that XAF1 is essential for antiviral immunity. XAF1 is not only a proapoptotic ISG, but it also stabilizes the master transcription factor IRF1 to induce antiviral genes. IRF1 directly binds to the IRF-Es of its target gene promoters and drives their transcriptions, which suggests a unique role of the XAF1-IRF1 loop in antiviral innate immunity, particularly in the host defect of IFN-I signaling such as invertebrates.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteínas Reguladoras de la Apoptosis , Factor 1 Regulador del Interferón , Infecciones por Virus ARN , Virus ARN , Proteínas Adaptadoras Transductoras de Señales/inmunología , Animales , Proteínas Reguladoras de la Apoptosis/inmunología , Humanos , Inmunidad Innata , Factor 1 Regulador del Interferón/inmunología , Ratones , Ratones Noqueados , Infecciones por Virus ARN/inmunología , Replicación Viral
3.
Front Immunol ; 13: 904481, 2022.
Artículo en Inglés | MEDLINE | ID: covidwho-1887101

RESUMEN

Bats are important hosts for various zoonotic viral diseases. However, they rarely show signs of disease infection with such viruses. As the first line for virus control, the innate immune system of bats attracted our full attention. In this study, the Tadarida brasiliensis MDA5 gene (batMDA5), a major sensor for anti-RNA viral infection, was first cloned, and its biological functions in antiviral innate immunity were identified. Bioinformatics analysis shows that the amino acid sequence of batMDA5 is poorly conserved among species, and it is evolutionarily closer to humans. The mRNA of batMDA5 was significantly upregulated in Newcastle disease virus (NDV), avian influenza virus (AIV), and vesicular stomatitis virus (VSV)-infected bat TB 1 Lu cells. Overexpression of batMDA5 could activate IFNß and inhibit vesicular stomatitis virus (VSV-GFP) replication in TB 1 Lu cells, while knockdown of batMDA5 yielded the opposite result. In addition, we found that the CARD domain was essential for MDA5 to activate IFNß by constructing MDA5 domain mutant plasmids. These results indicated that bat employs a conserved MDA5 gene to trigger anti-RNA virus innate immune response. This study helps understand the biological role of MDA5 in innate immunity during evolution.


Asunto(s)
Quirópteros , Inmunidad Innata , Helicasa Inducida por Interferón IFIH1 , Infecciones por Virus ARN , Animales , Quirópteros/inmunología , Virus de la Influenza A , Helicasa Inducida por Interferón IFIH1/genética , Interferón beta , Infecciones por Virus ARN/inmunología , Virus ARN
4.
PLoS Comput Biol ; 17(10): e1008874, 2021 10.
Artículo en Inglés | MEDLINE | ID: covidwho-1484838

RESUMEN

Respiratory viruses present major public health challenges, as evidenced by the 1918 Spanish Flu, the 1957 H2N2, 1968 H3N2, and 2009 H1N1 influenza pandemics, and the ongoing severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Severe RNA virus respiratory infections often correlate with high viral load and excessive inflammation. Understanding the dynamics of the innate immune response and its manifestations at the cell and tissue levels is vital to understanding the mechanisms of immunopathology and to developing strain-independent treatments. Here, we present a novel spatialized multicellular computational model of RNA virus infection and the type-I interferon-mediated antiviral response that it induces within lung epithelial cells. The model is built using the CompuCell3D multicellular simulation environment and is parameterized using data from influenza virus-infected cell cultures. Consistent with experimental observations, it exhibits either linear radial growth of viral plaques or arrested plaque growth depending on the local concentration of type I interferons. The model suggests that modifying the activity of signaling molecules in the JAK/STAT pathway or altering the ratio of the diffusion lengths of interferon and virus in the cell culture could lead to plaque growth arrest. The dependence of plaque growth arrest on diffusion lengths highlights the importance of developing validated spatial models of cytokine signaling and the need for in vitro measurement of these diffusion coefficients. Sensitivity analyses under conditions leading to continuous or arrested plaque growth found that plaque growth is more sensitive to variations of most parameters and more likely to have identifiable model parameters when conditions lead to plaque arrest. This result suggests that cytokine assay measurements may be most informative under conditions leading to arrested plaque growth. The model is easy to extend to include SARS-CoV-2-specific mechanisms or to use as a component in models linking epithelial cell signaling to systemic immune models.


Asunto(s)
Interacciones Huésped-Patógeno/inmunología , Interferones , Infecciones por Virus ARN , Virus ARN , Replicación Viral , Células Cultivadas , Biología Computacional , Células Epiteliales/inmunología , Humanos , Inmunidad Innata/inmunología , Interferones/inmunología , Interferones/metabolismo , Pulmón/citología , Pulmón/inmunología , Modelos Biológicos , Infecciones por Virus ARN/inmunología , Infecciones por Virus ARN/virología , Virus ARN/inmunología , Virus ARN/fisiología , Replicación Viral/inmunología , Replicación Viral/fisiología
5.
Science ; 373(6551): 231-236, 2021 07 09.
Artículo en Inglés | MEDLINE | ID: covidwho-1304152

RESUMEN

In mammals, early resistance to viruses relies on interferons, which protect differentiated cells but not stem cells from viral replication. Many other organisms rely instead on RNA interference (RNAi) mediated by a specialized Dicer protein that cleaves viral double-stranded RNA. Whether RNAi also contributes to mammalian antiviral immunity remains controversial. We identified an isoform of Dicer, named antiviral Dicer (aviD), that protects tissue stem cells from RNA viruses-including Zika virus and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-by dicing viral double-stranded RNA to orchestrate antiviral RNAi. Our work sheds light on the molecular regulation of antiviral RNAi in mammalian innate immunity, in which different cell-intrinsic antiviral pathways can be tailored to the differentiation status of cells.


Asunto(s)
ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Interferencia de ARN , Virus ARN/fisiología , ARN Viral/metabolismo , Ribonucleasa III/genética , Ribonucleasa III/metabolismo , Células Madre/enzimología , Células Madre/virología , Empalme Alternativo , Animales , Encéfalo/enzimología , Encéfalo/virología , Línea Celular , ARN Helicasas DEAD-box/química , Humanos , Inmunidad Innata , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Ratones , Organoides/enzimología , Organoides/virología , Infecciones por Virus ARN/enzimología , Infecciones por Virus ARN/inmunología , Infecciones por Virus ARN/virología , Virus ARN/genética , Virus ARN/inmunología , ARN Bicatenario/metabolismo , ARN Interferente Pequeño/metabolismo , Ribonucleasa III/química , SARS-CoV-2/genética , SARS-CoV-2/inmunología , SARS-CoV-2/fisiología , Replicación Viral , Virus Zika/genética , Virus Zika/inmunología , Virus Zika/fisiología , Infección por el Virus Zika/enzimología , Infección por el Virus Zika/inmunología , Infección por el Virus Zika/virología
6.
Int J Mol Sci ; 22(1)2020 Dec 30.
Artículo en Inglés | MEDLINE | ID: covidwho-1006614

RESUMEN

Being opportunistic intracellular pathogens, viruses are dependent on the host for their replication. They hijack host cellular machinery for their replication and survival by targeting crucial cellular physiological pathways, including transcription, translation, immune pathways, and apoptosis. Immediately after translation, the host and viral proteins undergo a process called post-translational modification (PTM). PTMs of proteins involves the attachment of small proteins, carbohydrates/lipids, or chemical groups to the proteins and are crucial for the proteins' functioning. During viral infection, host proteins utilize PTMs to control the virus replication, using strategies like activating immune response pathways, inhibiting viral protein synthesis, and ultimately eliminating the virus from the host. PTM of viral proteins increases solubility, enhances antigenicity and virulence properties. However, RNA viruses are devoid of enzymes capable of introducing PTMs to their proteins. Hence, they utilize the host PTM machinery to promote their survival. Proteins from viruses belonging to the family: Togaviridae, Flaviviridae, Retroviridae, and Coronaviridae such as chikungunya, dengue, zika, HIV, and coronavirus are a few that are well-known to be modified. This review discusses various host and virus-mediated PTMs that play a role in the outcome during the infection.


Asunto(s)
Procesamiento Proteico-Postraduccional , Infecciones por Virus ARN/enzimología , Infecciones por Virus ARN/virología , Virus ARN/metabolismo , Virus ARN/patogenicidad , Proteínas Virales/metabolismo , Acetilación , Virus Chikungunya/metabolismo , Coronavirus/metabolismo , Coronavirus/patogenicidad , Efecto Citopatogénico Viral , Glicosilación , VIH/metabolismo , VIH/patogenicidad , Interacciones Microbiota-Huesped , Humanos , Fosforilación , Infecciones por Virus ARN/inmunología , Infecciones por Virus ARN/metabolismo , Virus ARN/inmunología , Ubiquitinación , Replicación Viral/fisiología , Virus Zika/metabolismo , Virus Zika/patogenicidad
7.
J Infect Dis ; 221(6): 882-889, 2020 03 02.
Artículo en Inglés | MEDLINE | ID: covidwho-27190

RESUMEN

BACKGROUND: Virus infections result in a range of clinical outcomes for the host, from asymptomatic to severe or even lethal disease. Despite global efforts to prevent and treat virus infections to limit morbidity and mortality, the continued emergence and re-emergence of new outbreaks as well as common infections such as influenza persist as a health threat. Challenges to the prevention of severe disease after virus infection include both a paucity of protective vaccines as well as the early identification of individuals with the highest risk that may require supportive treatment. METHODS: We completed a screen of mice from the Collaborative Cross (CC) that we infected with influenza, severe acute respiratory syndrome-coronavirus, and West Nile virus. RESULTS: The CC mice exhibited a range of disease manifestations upon infections, and we used this natural variation to identify strains with mortality after infection and strains exhibiting no mortality. We then used comprehensive preinfection immunophenotyping to identify global baseline immune correlates of protection from mortality to virus infection. CONCLUSIONS: These data suggest that immune phenotypes might be leveraged to identify humans at highest risk of adverse clinical outcomes upon infection, who may most benefit from intensive clinical interventions, in addition to providing insight for rational vaccine design.


Asunto(s)
Mortalidad , Infecciones por Virus ARN/inmunología , Infecciones por Virus ARN/mortalidad , Animales , Ratones de Colaboración Cruzada , Citocinas/metabolismo , Modelos Animales de Enfermedad , Femenino , Humanos , Virus de la Influenza A/inmunología , Gripe Humana , Masculino , Ratones , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/mortalidad , ARN , Infecciones por Virus ARN/virología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/inmunología , Síndrome Respiratorio Agudo Grave/inmunología , Síndrome Respiratorio Agudo Grave/mortalidad , Linfocitos T/inmunología , Linfocitos T/metabolismo , Vacunas Virales/inmunología , Fiebre del Nilo Occidental/inmunología , Fiebre del Nilo Occidental/mortalidad , Virus del Nilo Occidental/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA